
So�ware Development (cs2500)

Lecture 19: Bloom Filters

M.R.C. van Dongen

November 15, 2010

Contents
1 Introduction 1

2 Bitmaps 2

3 Bloom Filters 4
3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Key-Value Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.2 Detecting Malicious Websites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.3 Probabilistic Spell Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.4 Database Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Summary 7

5 ForWednesday 8

1 Introduction
�is lecture studies bitmaps and Bloom Filters. Bitmaps are space-optimal data structures for representing

sets. �e candidate set members come from an index set {0, . . . , n− 1}. Here n is the set’s maximum

capacity. �ey can answer simple questions about the set. Bloom Filters are also used to represent sets.

Here the candidate members come from a key set

�

k0, . . . , kn−1

	

. For simplicity, assume that ki < ki+1
for 0 ≤ i < n− 1. �e answers from Bloom Filters are probabilistic: not all answers are correct with

100% probability. For large kn−1 such sets can no longer be represented in memory as bitmaps. However,

Bloom Filters for such sets are small. �ey require only a few bits per key.
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2 Bitmaps
A bitmap is a datastructure which represents subsets of a given index set. Here an index set is a set of the

form {0, . . . , n− 1}. �e value n is the set’s maximum capacity. A bitmap may be represented using a

boolean array. Unfortunately, Java does not prescribe how represent a boolean. �erefore, the jvm may

represent one boolean as an int. Depending on how the jvm represents a boolean bit arrays may be

heavy on the memory. �is is especially true if the index set is large. �is is why in practice bitmaps are

o�en represented as int arrays.

We have to implement the following operations:

Bitmap( int capacity ): Create a bitmap with a given capacity.

void add( int index ): Add a given index to the bitmap.

void remove( int index ): Remove a given index from the bitmap.

int size( ): What is the cardinality of the bitmap?

boolean contains( int index ): Determine if the bitmap contains a given index.

Figure 1 depicts a possible implementation which is based on top of a boolean array. To simplify the

presentation, we don’t override the method toString( ).

As already mentioned bitmaps are frequently represented as int arrays. When representing a bitmap

with an int array, we represent a bitmap with capacity of n using dn/32e ints. Here dxemeans rounding

x up to the smallest possible integer which is greater thanor equal to x . �e following demonstrates how

this is done using integer division.

private final int[] bits;
private int size;
public Bitmap( int capacity ) {

bits = new int[ (capacity + Integer.SIZE - 1) / Integer.SIZE ];
size = 0;

}

Java

Here the class constant Integer.SIZE is the size of an int in bits. We use bit n to represent index n.

Socalled bitwise operations are used to implement the instance methods. �e following demonstrates

how to implement contains( ). �e operators are explained in Table 1. All operands are ints. You don’t

have to know these operations for the written exam. Also you are not supposed to use them for your

assignments. �e class method int numberOfTrailingZeros( int number ) from the Integer class

returns the number of least signi�cant zeros in the twos complement bit representation of number.

final static int SHIFT = Integer.numberOfTrailingZeros( Integer.SIZE );
final static int MASK = Integer.SIZE - 1;
public boolean contains( int index ) {

return (bits[ index >> SHIFT ] & (1 << (index & MASK))) != 0;
}

Java
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public class Bitmap {
private final boolean[] bits;
private int size;

public Bitmap( int capacity ) {
bits = new boolean[ capacity ];
size = 0;

}

public void add( int index ) {
size += (bits[ index ]) ? 0 : 1;
bits[ index ] = true;

}

public void remove( int index ) {
size -= (bits[ index ]) ? 1 : 0;
bits[ index ] = false;

}

public int size( ) {
return size;

}

public boolean contains( int index ) {
return bits[ index ];

}
}

Figure 1: A possible bitmap implementation.

A bitmap with a capacity of n may be represented with (n+7)/8 bytes. We can represent all possible

2n
subset con�gurations. All operations take constant time. All operations are correct: there are no

errors.

Clearly using these bitwise operators is e�cient in time and memory. Bitmaps are nice if your index

sets are of the form {0, . . . , n− 1}. �is is not always a reasonable assumption. Many applications rely on

sets U , with n = |U |, but n�maxu∈U (u). We could still represent them as bitmaps. However, this

would require maxu∈U (u) bits. �e resulting data structure will no longer �t in to memory. When this

happens a lot of time is wasted on swopping. A datastructure that �ts in to memory would be much faster:
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Operator Example Result Description

a >> b 32 >> 4 2 Shi� a right by b bits. �e b high bits become the original

sign bit of a.

a >>> b -1 >>> 30 3 Shi� a right by b bits. �e b high bits become 0.

a << b 3 << 3 24 Shi� a le� by b bits. Zeros are shi�ed into the lower posi-

tions.

a & b 5 & 3 1 Bitwise and of a and b.

a | b 5 | 3 7 Bitwise or of a and b.

a ˆ b 5 ˆ 3 6 Bitwise exclusive or of a and b.

˜a ˜0 -1 Bitwise complement of a.

Table 1: Bitwise operators.

even if the resulting “set” operations are sometimes inaccurate. In the following section we shall study a

neat idea which lets us improve on the standard bitmap implementation.

3 Bloom Filters
A Bloom Filter is a probabilistic version of a “set”. A Bloom Filter requires much less memory. It cannot

answer questions about size. You can add, but you cannot remove from the set.
1

It can be used to answer

set membership queries: contains( int key )? �e accuracy of the answer depends on the answer:

false: When a Bloom Filter’s answer to the query contains( key ) is false then key is de�nitely not

in the set.

true: When a Bloom Filter’s answer to the query contains( key ) is true then the answer may not be

100% accurate. Instead, the answer is accurate with a certain probability.

Let u be a member from the set member universe U . Furthermore, let B be a Bloom Filter. Finally,

let’s assume we “ask” the Bloom Filter whether u ∈ B . �ere are four possible cases:

• B returns false and u /∈ B . When the Bloom Filter returns false it is true with 100% probability

that u /∈ B .

• B returns false and u ∈ B . �is situation cannot occur.

• B returns true and u ∈ B . When the Bloom Filter returns true then the answer is not always

correct. However, it is correct with a certain probability.

• B returns true and u /∈ B . �is is called a false positive. �e ‘positive’ refers to the fact that the

answer is true and the ‘false’ to the fact that the answer is incorrect. �e false positive rate is the

probability that a false positive occurs.

1
However, removing is possible with a so-called Counting Bloom Filter. Also removing may be simulated with a second

Bloom �lter that represents removals.
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In general we don’t know whether u ∈ B or k /∈ B . A�er all, that’s why we’re using B . When using the

�lter, we never have to worry when B returns false. We only have to be careful that false positives may

occur. So when B returns true, the result may be incorrect.

3.1 Implementation
�e implementation of Bloom Filters is surprisingly simple. Before looking at the Bloom Filter imple-

mentation, let’s revisit our bitmaps. We may view a bitmap as a key-value system. �e keys and values

are equal. It is recalled that with perfect hashing there are no collisions. With perfect hashing we could

decide set membership of n members using n bits:

• We hash each set members to its hash code.

• �e hash codes should be in the range {0, . . . , n− 1}.

• Use the hash code as an index in the array.

Unfortunately, collisions are very common. �erefore, an n-bit bitmap representation is out of the

question.

Let U be the universe of candidate set members. Let n = |U | and let I = {0, . . . , m− 1}, with

m ≥ n. With one perfect hash function, h0 : U → I we can decide set membership with a bitmap.

Bloom Filters decide set membership with several hash functions, hi : U → I . �e hash functions need

not be perfect. An empty �lter is represented with m bits: each is 0. To add u ∈U to the �lter, we set

Bit hi (u) to 1 for each hash function hi (·). �en u is not contained if Bit hi (u) is equal to 0 for some

hash function hi (·). Otherwise, u is in the set, but false positives may occur.

For example, let’s assume U = {0,1,7}. Furthermore, let’s use 4 bits and 2 hash functions.
2

�e

hash functions are given by h0(k) = k + 1 mod 3 and h1(k) = k mod 4. Table 2 lists the images of the

keys under the hash functions. Column ‘Union’ in the table lists the bitwise or of setting Bit h0(k) and

Bit h1(k). Table 3 depicts all possible combinations of subsets of U and the bits which are set if 4 bits are

k h0(k) h1(k) Union of Bits

0 1 0 0011
1 2 1 0110
7 2 3 1100

Table 2: Images of keys under hash functions.

used to represent the Bloom Filter.

3.2 Applications
�is section brie�y discusses some applications of Bloom Filters.

2
Notice that with a bitmap and no hash function we would need at least 8 bits.
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Keys Added Bits Set 0 ∈ B? 1 ∈ B? 7 ∈ B?

{ } 0000 − − −
{0} 0011 + − −
{1} 0110 − + −
{7} 1100 − − +
{0,1} 0111 + + −
{0,7} 1111 + + +
{1,7} 1110 − + +
{0,1,7} 1111 + + +

Table 3: Representing the set U = {0,1,7} using a 4-bit Bloom Filter and hash functions h0(k) =
k mod 4 and h1(k) = k + 1 mod 3. �ere is one false positive for the question 1 ∈ B with 0 and 7 in B .

3.2.1 Key-Value Storage Systems

One application of Bloom Filters are key-value storage systems. �ese systems use several, slow secondary

media to store values of keys. Not all candidate keys correspond to values.

For simplicity, let’s assume there’s only one slow disk. We want to know if a value (and if so which)

has the key k . �e query B.contains( k ) may result in three cases:

1. B returns false. When this happens disk access is avoided: we can trust this answer.

2. B returns true and k ∈ B . Disk access is unavoidable. We access the disk to see if there’s a value

with key k . �e value happens to exist and we return the value.

3. B returns true and k /∈ B . Again disk access is unavoidable. We access the disk to see if there’s a

value with key k . �e value doesn’t exist and we return⊥. Here we return⊥ to indicate that there

is no value having key k .

If there are enough queries for non-existing keys then this saves time.

3.2.2 DetectingMaliciousWebsites

A related application is determining whether a given website is malicious. �ere are billions of websites, so

it is impossible to store this information in memory. �is application may be viewed as a key-value storage

application because we want to check which boolean (the value) corresponds to which url (the key).

Let’s assume we want to know whether a given url is malicious. We hash the url into hash codes h0, …,

hn−1. If Bit hi = 0 for some i such that 0≤ i < n, then the url isn’t know. Since k /∈ B the answer is

100% reliable. �erefore no url with hash code k is known as a malicious website. �is includes our

url. Otherwise the url is “known” (but this may be a false positive). �ere are two possibilities:

• We trust the answer.

• We use a slow database operation to determine if the url is known.
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3.2.3 Probabilistic Spell Checkers

�e next example may also be viewed as an example of a key-value storage system: probabilistic spell

checkers. Using a Bloom Filter this is easy asπ. We start with an empty Bloom Filter, B . For each allowed

word, we add the word’s hash code to B . If a user enters a word, we compute the hash codes of the word.

If some of the hash codes aren’t in the �lter, then the word is invalid. Otherwise, we assume the word is

valid.

3.2.4 Database Joins

�e �nal application which we shall study is pre-processing database joins. Let’s assume we have two

database tables T1 and T2. Let’s furthermore assume we wish to compute the join T1 ./ T2. �is is an

expensive operation, which takes O (|T1| × |T2|) worst-case time. An important operation is removing

redundant rows from T1 and T2. �ese are the rows which cannot contribute to the �nal result. �is also

takes O (|T1| × |T2|) worst-case time. Using Bloom Filters we may remove them in time O (|T1|+ |T2|).
Of course, the result will contain false positives but we can remove them in a second phase with an

accurate algorithm.

Let’s remove the redundant rows of T1. It is recalled that the scope of a table are its attributes. Let S
be the intersection of the scopes of T1 and T1. We start with an empty �lter B . �ere are two phases:

1. In the �rst phase we add the hash values of the rows in T2 to B .

2. In the second phase we remove the rows from T1 whose hash values are not in B .

�is works if the hash values of the rows are completely determined by their projections onto S . In

practice, this pre-processing step speeds up the overall join computation.

3.3 Properties
In this section we shall discuss some of the properties of Bloom �lters.

�e time to decide membership is independent of the current “size”. With k constant-time hash

functions we needO (k) time. �e reliability may be improved by increasing the number of bits. Let R be

the false positive rate. Here the false positive rate is the probability that a false positive occurs. For±4.8
extra bits per member, R reduces by a factor of±10. See for example http://en.wikipedia.org/wiki/
Bloom_filter for a reasonably accessible presentation.

4 Summary
We’ve studied n-bit bitmaps and m-bit Bloom Filters, where m ≥ n. Bitmap can decide which numbers

in {0, . . . , n− 1} are in the set. �e i -th member is in the set if and only if the i th bit is set. �ey are

100% accurate. By adding perfect hashing they can also be used for other kinds of sets.

Bloom Filters are probabilistic data structures. �ey use several hash functions, hi (·). A candidate

member, u , is not in the �lter if some Bit hi (u) is 0 for some i . Otherwise, Bit hi (u) is 1 for each i . In

this case u is in the set, but false positives may occur.
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5 ForWednesday
Study the notes.

8


	Introduction
	Bitmaps
	Bloom Filters
	Implementation
	Applications
	Key-Value Storage Systems
	Detecting Malicious Websites
	Probabilistic Spell Checkers
	Database Joins

	Properties

	Summary
	For Wednesday

